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Abstract— Visual-based robot pose estimation is a fundamen-
tal challenge, involving the determination of the camera’s pose
with respect to a robot. Conventional methods for camera-to-
robot pose calibration rely on fiducial markers to establish
keypoint correspondences. However, these approaches exhibit
significant variability in accuracy and robustness, particularly
in 2D keypoint detection. In this work, we present an end-
to-end pose estimation approach that achieves camera-to-robot
calibration using monocular images and keypoint information.
Our method employs a two-level nested U-shaped architecture,
featuring a bottom-level residual U-block to extract richer
contextual information from diverse receptive fields to enhance
keypoint refinement. By incorporating the perspective-n-point
(PnP) algorithm and leveraging 3D robot joint keypoints, we
establish correspondence of 3D coordinate points between the
robot’s coordinate system and the camera’s coordinate system,
facilitating accurate pose estimation. Experimental evaluations
encompass real-world and synthetic datasets, demonstrating
competitive results across three distinct robot manipulators.

I. INTRODUCTION

In unstructured and dynamically changing environments
[1], the precise estimation of camera-to-robot pose stands
as a paramount necessity. This estimation process serves to
transform environmental information observed visually into
the robot coordinate frame, thereby facilitating a spectrum
of downstream tasks encompassing interaction, manipulation,
and grasping. The crux of the challenge resides in translating
measurements acquired in camera space into the domain of
the robot’s task space. Consequently, the determination of
the camera-to-robot pose emerges as a fundamental quandary
within the discipline of robot pose estimation.

While robotic arms of commercial-grade quality, exempli-
fied by entities such as the Barrett WAM arm, Franka Emika
Panda, or Kinova JACO, can attain a commendable degree
of precision in joint state measurement through the judicious
utilization of encoders, a different scenario unfolds when we
consider cost-effective robotic arms often characterized by
potential limitations in joint encoder resolution and backlash.
In such instances, the proposition of harnessing computer
vision techniques for the estimation of joint angles or end-
effector poses emerges as an attractive and viable solution.

Traditional methodologies, such as the manual calibration
of cameras employing fiducial markers[2], [3], present a
series of substantial challenges. These approaches frequently
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necessitate offline calibration procedures, entailing the labor-
intensive task of maneuvering the robot across diverse joint
configurations. Furthermore, these methods make a static
assumption regarding the relationship between the camera
and the robot, rendering them susceptible to inaccuracies
even in the presence of minor perturbations in the camera
or robot position. The pervasive issue of self-occlusion
further compounds these challenges, impacting the visibility
of fiducial markers.

To surmount these formidable challenges, recent research
endeavors have ventured into the realm of deep learning
techniques for keypoint detection and camera-to-robot pose
estimation [4]. Deep learning [5], [6] offers potent tools
for enhancing robot vision capabilities [7], [8], enabling
the localization of predefined keypoints within monocular
images and the subsequent reconstruction of the robot’s
pose [9]. For rendering-based method [10], they employ
the rendered images and the masks of an anchor part to
estimate the robot’s new pose. Subsequently, the iteration
is completed by comparing with ground truth pose. Their
method requires more time when estimating the initial robot
pose. For keypoint-based method [11], they achieve the
purpose of pose estimation through the marker-less detection
of optimized keypoints. The inaccuracy of 2D keypoint de-
tection and the success rate related to the general problem of
perspective-n-point(PnP ) algorithms still affect the practical
performance of pose estimation [12].

In this work, our proposed approach intricately amal-
gamates multi-scale information extraction with the PnP
transformation. To this end, we employ nested U-structures
designed to capture contextual information spanning various
scales. This strategic fusion culminates in heightened preci-
sion and enhanced robustness in keypoint detection. In terms
of training data, our approach capitalizes on automatically
generated synthetic images from [4], effectively bridging
the divide between the real and simulated domains through
domain randomization. Our system undergoes rigorous val-
idation on industrially advanced robot arms, thereby sub-
stantiating its superiority in pose estimation accuracy when
juxtaposed with traditional keypoint-based methods.

II. RELATED WORK

6D Pose Estimation for Instance-Level Objects The
estimation of 6D poses for instance-level objects has been a
recurring challenge in the domain of computer vision. This
task involves predicting the spatial configuration of objects
within a defined reference frame and their corresponding

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 795

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
10

84
4

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 04,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



Computer-Aided Design (CAD) representations. Conven-
tional approaches have traditionally tackled this challenge
by inferring 2D-3D correspondences associated with various
features. For example, point cloud data alignment with CAD
models has been utilized for template matching [13]. Recent
advancements [14], [15], [16] have shifted towards detecting
geometry-guided features within images to establish 2D-
3D correspondences. Subsequently, the Perspective-n-Point
(PnP ) solver [17] is applied to estimate the poses of
objects. In the context of our research, the presence of
joint constraints and the inherent complexity arising from
the numerous degrees of freedom in robot arm movements
introduce a significantly heightened level of intricacy into
the task of pose estimation, surpassing the challenges posed
by instance-level objects.

Vision-Based Robot Arm Pose Estimation When it
comes to estimating the pose of a robot arm using visual
information, there are two primary approaches: those that
rely on 2D images and those that utilize 3D sensors. In
2D image-based approaches, three major methodologies have
emerged: marker-based, rendering-based, and keypoint-based
methods. Marker-based approaches involve the detection of
markers pre-positioned along the robot’s kinematic chain
within 2D images [18], [19]. These methods then calculate
the coordinates of these markers in the robot’s base frame
using forward kinematics and provided joint configurations.
The robot’s pose is subsequently estimated through the reso-
lution of an optimization problem [20], [21]. This approach
offers accuracy but is dependent on the visibility and precise
detection of markers. In the rendering-based approach, as
demonstrated by Lu et al. [22], the robot’s joint states
are initially estimated and then transformed into silhouette
images using differentiable rendering techniques. These re-
sulting images are compared with the mask of the input
image for self-supervision, enhancing the effectiveness of
pose estimation. Labbe et al. [10] iteratively refine rendered
images through comparison with ground truth, optimizing
the camera-to-robot pose. However, this method is often
time-consuming, especially during the initial pose estima-
tion phase. In the keypoint-based method, Lu et al. [11]
introduced an optimization algorithm aimed at identifying
optimal 2D candidate keypoints on the bimanual robot and
surgical robot. Tian et al. [23] integrates the robot’s joint con-
figuration and a temporal attention module to fuse keypoint
features across frames within an image sequence. Then a PnP
solver is employed to compute the camera-to-robot pose. In
3D sensor-based approaches, such as RGB-D cameras and
LiDAR, these sensors offer distinctive advantages and face
specific challenges. RGB-D cameras, due to their capacity
to directly capture depth maps [24], offer advantages but
are sensitive to light conditions, making them less effective
in strongly illuminated environments [25]. Bohg et al. [26]
utilized depth maps to classify each pixel as either part of
the robot or the background. A voting scheme was employed
to predict the robot’s joint states. On the other hand, LiDAR
sensors provide accurate three-dimensional information and
excel in outdoor environments. However, their cost can be a

limiting factor for many applications, especially high-quality
LiDARs.

Multi-Scale Image Processing. Extraction of multi-scale
features [27] is a fundamental and consequential endeavor.
Achieving the precise extraction of 2D features from RGB
images necessitates the consideration of a diverse and com-
prehensive set of features. To address this complex task,
researchers have explored innovative techniques and ap-
proaches. Li et al. [28] devised a solution by harnessing
feature pyramid attention blocks, which effectively capture
features spanning a spectrum of scales. In a parallel en-
deavor, Zhang et al. [29] introduced a specialized module
integrated within the backbone network. This module was
meticulously designed to extract both global and local in-
formation concurrently, paving the way for the acquisition
of multi-scale features. Wang et al. [30], [31] effectively
bridge information in distinct image patches using self-
attention and capture these multi-scale features through the
encoder architecture within their transformer-based visual
grasp detection framework. Qin et al. [32] embarked on their
quest by employing a densely supervised encoder-decoder
network, enriched with a residual optimization module. This
holistic architecture was devised to predict and refine feature
maps, contributing significantly to the process of boundary
perception. In summary, within the domain of multi-scale
image processing, researchers have ventured into distinct
yet interconnected avenues, each contributing its own set of
advancements and insights. These pioneering efforts encom-
pass feature pyramid attention blocks, specialized network
modules, densely supervised architectures, and innovative
contextual information extraction techniques.

III. PROBLEM FORMULATION

Given an inertial reference frame R for the robot manip-
ulator and the camera coordinate system C, the estimated
transformation matrix between the camera coordinate system
C and the robot coordinate system R is denoted by T̃R

C ∈
SE(3). When provided with RGB images, the predetermined
positions of 3D keypoints in the robot’s coordinate space,
and the camera’s intrinsic parameters, the goal of this work
is to develop an end-to-end pose estimation approach for the
transformation matrix T̃R

C .

IV. METHOD

A. Approach Overview

To estimate the camera-to-robot transformation matrix T̃R
C

from single-frame images, our approach consists of a two-
stage process, i.e., the keypoint detection stage and the
2D-3D pose estimation stage, as visualized in Fig. 1. The
proposed approach takes as input the RGB images and the
3D keypoints in the robot’s coordinate space and outputs
T̃R
C . Specifically, we employ an encoder-decoder network

[33] with a nested U-structure as the keypoint detector. This
network generates belief maps for each keypoint. Leveraging
the peaks of these belief maps, along with the camera
intrinsic parameters and 3D keypoints, the transformation
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Fig. 2. Illustration of our network for belief map generating.

matrix T̃R
C is estimated using the Perspective-n-Point (PnP )

solver [17].

B. Network Architecture

The network architecture is designed to capture multi-
scale features, a crucial element for improving 2D keypoint
detection. It takes RGB images of dimensions 400×400×3
as input and produces 2D belief maps of size 400× 400×n
for each keypoint, where n is the number of robot joints.
These belief maps encode the likelihood of keypoints being
projected onto specific pixels, with keypoints’ 2D projection
coordinates identified by locating the peak values within

these maps.
The network architecture, as depicted in Fig. 2, is based

on a nested U-structure and consists of six encoder stages
and five decoder stages, incorporating a belief map fusion
module [33]. Here’s a breakdown of its components:

Encoder Component: This segment comprises six resid-
ual U-blocks (RSU − L), with L denoting the number of
layers in the encoder as shown in Fig. 3. Each RSU-L block
contains three components. 1) Local Feature Extraction:
an initial convolutional layer for local feature extraction,
transforming the feature map into an intermediate map F1(x)
with the same output channel as the entire RSU block.
2) Multi-scale Contextual Information: a U-shaped encoder-
decoder structure that employs a cascade of downsampling
and convolution stages to extract contextual information
across various scales. This information is encoded into a
high-resolution feature map U(F1(x)) through a progressive
upsampling structure. 3) Fusion of Local and Contextual
Features: a fusion process that combines the intermediate
feature map F1(x) containing local features with the feature
map U(F1(x)) containing multi-scale contextual features:
F1(x)+U(F1(x)). This fusion enhances the network’s ability
to capture diverse information at different scales.

1 1( ) ( ( ))x x+1( )x

1( ( ))x

L=7

Upsample×2

Concatenation

Addition

Conv+BN+RELUConv+BN+RELU

Downsample+Conv+BN+ReLUDownsample+Conv+BN+ReLU

Conv+BN+ReLU

Dilation=2

Conv+BN+ReLU

Dilation=2

Upsample+Conv+BN+ReLUUpsample+Conv+BN+ReLU

Fig. 3. RSU-L block

Decoder Stages: The decoder stages in our network ar-
chitecture are responsible for reconstructing high-resolution
belief maps from the abstract and multi-scale representations
learned by the encoder. These stages play a crucial role in
the final output of the network. In each decoder stage, the
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following steps occur. 1) Feature Concatenation: the decoder
takes inputs from the corresponding encoder stage and the
upsampled feature maps from the previous decoder stage.
These inputs are concatenated to ensure that the network
has access to the detailed information from the encoder
and the context learned in earlier stages. 2) Upsampling:
the concatenated features are then upsampled to match the
dimensions of the belief maps generated by the encoder.
This upsampling process helps in recovering the spatial
details lost during the downsampling stages of the encoder.
3) Convolution and Activation: the upsampled features pass
through a convolutional layer, followed by an activation
function. This step refines the features and prepares them
for generating the belief maps. The decoder stages work in
a cascaded manner, progressively refining and expanding the
features to generate the final belief maps for each keypoint.

Belief Map Fusion Module: This module connects the
decoder stages and the final encoder stage. It employs a
3 × 3 convolution layer and a sigmoid function to generate
six side belief maps Fside from stage En-6 (i.e., the bottom
of Fig. 2) and the decoder. These side belief maps are
upsampled to match the input image’s size and are then fused
through concatenation. Subsequently, they pass through a
1 × 1 convolution layer and a sigmoid function to produce
the final belief map Ffuse for each keypoint. For training, an
L2 loss function is applied, with the target being the ground
truth belief map generated using a σ of 2 pixels for Gaussian
filter to smooth the peaks.

This architecture allows us to capture multi-scale features
effectively, enhancing the precision and robustness of 2D
keypoint detection.

C. 2D - 3D Perspective Transformation

In our pursuit of accurate camera-to-robot pose estimation,
we employ a systematic approach underpinned by geometric
transformations and the Perspective-n-Point (PnP ) algo-
rithm. The fundamental objective is to determine the pose
of a robot arm relative to the camera’s coordinate system,
enabling seamless interaction between the robot and its
environment through visual data by

PC = T̃R
C PR, (1)

where PR and PC represent the positions of a set of 3D
keypoints on the robot joints within the robot frame and the
camera frame, respectively.

Our method commences with the PR. The crux of the
problem lies in establishing the transformation matrix T̃R

C ,
which characterizes the relationship between these 3D points
and their corresponding 2D projections on the camera’s
image plane. Solving this transformation is relative to the
intrinsic properties of the camera, encapsulated within the
intrinsic matrix K.

The transformation equation is expressed as:

α · i = K · T̃R
C · PR (2)

where α represents the scale factor, i denotes the 2D image
coordinates.

To resolve for the transformation matrix T̃R
C , we leverage

the Perspective-n-Point (PnP ) algorithm. This algorithm
employs the camera’s intrinsic K, the 2D positions of key-
points i, and the known 3D coordinates of these keypoints on
the robot PR. The 2D positions of keypoints are derived from
the output belief maps, which serve as heatmaps indicating
the probable locations of these keypoints in the image. To
obtain precise 2D coordinates, we apply a weighted average
calculation to the values surrounding the heatmap’s highest
points, ensuring accuracy in keypoint localization.

In summary, our camera-to-robot pose estimation method-
ology involves the determination of the transformation matrix
(T̃R

C ). This transformation is facilitated by the PnP algorithm.
This comprehensive approach empowers the robot to discern
its precise spatial orientation within its environment, thereby
enabling it to execute tasks based on visual information.

V. EXPERIENTS AND RESULTS

In this section, we present a comprehensive evaluation
of our approach on a diverse set of real-world datasets.
We compare our method with state-of-the-art algorithms
in the domain of camera-to-robot pose estimation tasks.
Additionally, we conduct an ablation study involving three
different robot arms to validate the effectiveness of our
architecture.

A. Datasets, Metrics, and Baselines

Dataset: For the training datasets, we leverage the Panda,
Kuka, and Baxter datasets provided by [4]. These datasets,
generated through domain randomization, offer a wide range
of realistically synthesized robot arm images across various
scenarios. For testing purposes, we evaluate our method on
five distinct datasets involving different robot manipulators:
Panda 3cam-AK, Panda 3cam-RS, Panda ORB, Kuka Synth
Test, and Baxter Synth Test [4].

Metrics: We employ both 2D and 3D metrics to assess our
approach’s performance. For 2D metrics, we use the Percent-
age of Correct Keypoints (PCK) [34], which quantifies the
L2 error between ground truth and predicted keypoints. For
3D metrics, we utilize the Average Distance (ADD) [35],
calculated as the average L2 distance between T̃R

C PR (the
estimated 3D keypoints using the transformation matrix) and
P̄C (the ground truth 3D keypoints). The ADD is computed
as follows:

ADD =
1

n

n∑
i=1

∥∥∥T̃R
C PR − P̄C

∥∥∥
2

(3)

For both PCK and ADD metrics, we compute the Area
Under the Curve (AUC) as the percentage below a specific
threshold. Additionally, we consider the median across all
keypoints in both cases.

Compared baselines: The following three baselines are
considered. RobotStructure [23] specializes in estimating
camera-to-robot pose from single-view successive frames.
Dream [4] represents an advanced approach for estimating
camera-to-robot pose using single-frame images. CenterNet

798

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 04,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



[36] focuses on achieving single-frame object detection by
modeling an object as a singular keypoint.

B. Implementation Details

Fig. 4. Belief maps (right column) overlayed on the original images(left
column) for Rethink Baxter, Kuka LBR iiwa, Franka Emika Panda from up
to down.

The entire system is implemented using PyTorch. Seven
keypoints are strategically placed at the joints of the Franka
Emika Panda robot arm. The model is trained for 100
epochs with a learning rate set to 1e-4. Network parameter
optimization is conducted using the Adam optimizer [37]
with a momentum of 0.9. The training dataset comprises
approximately 100,000 synthesized images. We select the
weights that yield optimal performance during validation.
To minimize the discrepancies between ground truth and
predictions, we utilize the L2 loss function.

C. Robot Pose Estimation on Real-world Datasets

We present the evaluation of our algorithm on real-world
datasets and provide qualitative results for pose estimation,
as illustrated in Fig. 4. We compare our approach with
baseline methods, including RobotStructure [23], Dream
[4], and CenterNet [36]. Table I presents the comparative
analysis of the PCK and ADD metrics, along with their
respective AUC values and medians, across three different
real-world datasets. Baseline results are primarily sourced
from RobotStructure [23], where CenterNet [36] is employed
for 2D keypoint estimation in this context.

In terms of the 2D metric PCK, our approach exhibits
a significant advantage over the baseline across various

datasets. Notably, on the Panda 3cam-AK dataset, our
method outperforms the second-best model by 7.24% in PCK
and reduces the median error by 0.63. This demonstrates
the adaptability of our model, trained on synthetic data, to
perform well under various camera intrinsics. On the Panda
ORB dataset, which includes multiple camera viewpoints,
our method demonstrates a notable improvement of 6.23
points in PCK compared to state-of-the-art approaches.

To assess the precision of pose estimation through the 3D
metric ADD, which provides a more intuitive representation,
our method achieves superior performance on both Panda
3cam-AK and Panda ORB, with respective improvements of
11.84% and 9.8% over alternative approaches. Furthermore,
the median of our ADD metric achieves 22.05mm and
12.76mm on the Panda 3cam-AK and Panda ORB datasets,
respectively.

Compared to previous methodologies, our approach al-
lows for greater network depth, enabling higher resolutions.
Additionally, we extract multi-level deep features through
a straightforward architectural design, contributing signifi-
cantly to the superiority of our approach.

D. Ablation Study

In this section, we conduct comprehensive experiments
aimed at exploring two key aspects:

1. The necessity of introducing a nested U-shaped archi-
tecture and utilizing RSU (Residual and U-shaped) blocks
for the extraction of intra-stage multi-scale features. 2. The
capacity of our framework to generalize across a diverse set
of robot manipulators.

To validate the effectiveness of our model design, we
replace the network backbone of our architecture with dif-
ferent alternatives in the encoder section. We experiment
with two popular architectures, VGG and ResNet, and output
resolutions at full (F), half (H), or quarter (Q) in the decoder
section, resulting in three distinct designs: vgg-Q, vgg-F, and
resnet-H [4].

Furthermore, we assess the generalizability of our ap-
proach by conducting experiments on three different robotic
manipulators: Franka Emika Panda, Kuka LBR iiwa, and Re-
think Baxter. To ensure fairness and consistency, all methods
are trained and tested on the same datasets specific to each
robot.

As depicted in Fig. 5, our architecture consistently out-
performs other models in terms of performance. Notably,
our approach exhibits remarkable optimization, particularly
at lower error thresholds. This achievement can be attributed
to our capability for feature extraction and integration across
multiple scales, leading to more accurate predictions at lower
permissible error levels.

Significantly, on the Rethink Baxter manipulator, over
90% of 3D distance errors are confined to less than 20 mm,
and 87.4% of reprojection errors do not exceed 20 pixels.
Notably, the performance on the Kuka LBR iiwa surpasses
that on other robot manipulators. For the Franka Emika
Panda, we observe a notable increase of 8.2% in the AUC of
ADD and an 8.2% increase in the AUC of PCK. Moreover,
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TABLE I
PCK AND ADD

Method

PCK ADD

Panda 3cam-AK Panda 3cam-RS Panda ORB Panda 3cam-AK Panda 3cam-RS Panda ORB

AUC↑ Median@pix↓ AUC↑ Median@pix↓ AUC↑ Median@pix↓ AUC↑ Median@mm↓ AUC↑ Median@mm↓ AUC↑ Median@mm↓

CenterNet[36] 52.38 4.90 67.38 3.51 60.11 3.47 34.07 37.56 59.26 21.25 50.59 24.22

Dream[4] 52.28 4.83 64.82 3.90 57.44 3.73 44.55 33.68 58.60 24.57 52.56 22.53

RobotStructure[23] 62.75 3.19 75.68 2.68 63.28 3.46 49.42 29.61 79.89 9.77 60.30 18.12

Ours 69.99 2.56 77.71 2.36 69.51 2.87 61.26 22.05 75.82 12.45 70.16 12.76

↑ indicates higher is preferable, while ↓ indicates lower is preferable.The AUC for PCK and ADD are captured at thresholds of 12 pixels and 6 cm, respectively.
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Fig. 5. The results of ADD (top) and PCK (bottom) metrics on diverse backbones and robot manipulators(Rethink Baxter, Kuka LBR iiwa, Franka Emika
Panda from left to right), with the numbers in parentheses indicating their respective area under the curve (AUC) values.

it is noteworthy that over 95% of the samples exhibit errors
less than 40 mm when the threshold is set at 40 mm.

In conclusion, our nested architecture shows promise in
achieving more favorable results in the robot pose estimation
task compared to other backbone-based designs.

VI. CONCLUSIONS

In this study, we have introduced an end-to-end deep neu-
ral network framework for the challenging task of camera-
to-robot pose estimation. Our approach employs a nested
U-shaped network architecture, enabling the extraction of
multi-scale features at various stages to accurately determine
keypoint locations in single-frame images, ultimately leading
to precise robot pose estimation. Significantly, our method
achieves remarkable precision without relying on fiducial

markers, demonstrating its practicality and effectiveness. The
results highlight the superiority of our approach compared to
other state-of-the-art algorithms in the realm of camera-to-
robot pose estimation. The utilization of refined keypoints
significantly enhances the performance of pose estimation
for robot arms, showcasing the potential for real-world
applications.

REFERENCES

[1] Z. Zhou, S. Wang, Z. Chen, M. Cai, H. Wang, Z. Li, and Z. Kan, “Lo-
cal observation based reactive temporal logic planning of human-robot
systems,” IEEE Transactions on Automation Science and Engineering,
2023.
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